- Our best-known icons of success are elevated for their precocity and their head starts—Mozart at the keyboard, Facebook CEO Mark Zuckerberg at the other kind of keyboard. The response, in every field, to a ballooning library of human knowledge and an interconnected world has been to exalt increasingly narrow focus. Oncologists no longer specialize in cancer, but rather in cancer related to a single organ, and the trend advances each year. Surgeon and writer Atul Gawande pointed out that when doctors joke about left ear surgeons, “we have to check to be sure they don’t exist.
- I was slightly bemused to find that a former Navy SEAL with an undergraduate degree in history and geophysics pursuing graduate degrees in business and public administration from Dartmouth and Harvard needed me to affirm his life choices. But like the others in the room, he had been told, both implicitly and explicitly, that changing directions was dangerous.
- <mark style="background: #FFF3A3A6;">Starting something new in middle age might look that way too. Mark Zuckerberg famously noted that “young people are just smarter.” And yet a tech founder who is fifty years old is nearly twice as likely to start a blockbuster company as one who is thirty, and the thirty-year-old has a better shot than a twenty-year-old. Researchers at Northwestern, MIT, and the U.S. Census Bureau studied new tech companies and showed that among the fastest-growing start-ups, the average age of a founder was forty-five when the company was launched.</mark>
- Highly specialized health care professionals have developed their own versions of the “if all you have is a hammer, everything looks like a nail” problem. Interventional cardiologists have gotten so used to treating chest pain with stents—metal tubes that pry open blood vessels—that they do so reflexively even in cases where voluminous research has proven that they are inappropriate or dangerous. A recent study found that cardiac patients were actually less likely to die if they were admitted during a national cardiology meeting, when thousands of cardiologists were away; the researchers suggested it could be because common treatments of dubious effect were less likely to be performed.
- The bestseller Talent Is Overrated used the Polgar sisters and Tiger Woods as proof that a head start in deliberate practice is the key to success in “virtually any activity that matters to you.” The powerful lesson is that anything in the world can be conquered in the same way. It relies on one very important, and very unspoken, assumption: that chess and golf are representative examples of all the activities that matter to you.
- There is a saying that “chess is 99 percent tactics.” Tactics are short combinations of moves that players use to get an immediate advantage on the board. When players study all those patterns, they are mastering tactics. Bigger-picture planning in chess—how to manage the little battles to win the war—is called strategy. As Susan Polgar has written, “you can get a lot further by being very good in tactics”—that is, knowing a lot of patterns—“and have only a basic understanding of strategy.” Thanks to their calculation power, computers are tactically flawless compared to humans.
- The winning team comprised four people and several computers. The captain and primary decision maker was Anson Williams, a British engineer with no official chess rating. His teammate, Nelson Hernandez, told me, “What people don’t understand is that freestyle involves an integrated set of skills that in some cases have nothing to do with playing chess.” In traditional chess, Williams was probably at the level of a decent amateur. But he was well versed in computers and adept at integrating streaming information for strategy decisions.
- the more a task shifts to an open world of big-picture strategy, the more humans have to add.
- IBM’s Watson destroyed at Jeopardy! and was subsequently pitched as a revolution in cancer care, where it flopped so spectacularly that several AI experts told me they worried its reputation would taint AI research in health-related fields. As one oncologist put it, “The difference between winning at Jeopardy! and curing all cancer is that we know the answer to Jeopardy! questions.” With cancer, we’re still working on posing the right questions in the first place.
- Chris Argyris, who helped create the Yale School of Management, noted the danger of treating the wicked world as if it is kind. He studied high-powered consultants from top business schools for fifteen years, and saw that they did really well on business school problems that were well defined and quickly assessed. But they employed what Argyris called single-loop learning, the kind that favors the first familiar solution that comes to mind. Whenever those solutions went wrong, the consultant usually got defensive. Argyris found their “brittle personalities” particularly surprising given that “the essence of their job is to teach others how to do things differently.”
- psychologist Ellen Winner, one of the foremost authorities on gifted children, noted, no savant has ever been known to become a “Big-C creator,” who changed their field.
- <mark style="background: #FFF3A3A6;">Compared to other scientists, Nobel laureates are at least twenty-two times more likely to partake as an amateur actor, dancer, magician, or other type of performer.</mark> Nationally recognized scientists are much more likely than other scientists to be musicians, sculptors, painters, printmakers, woodworkers, mechanics, electronics tinkerers, glassblowers, poets, or writers, of both fiction and nonfiction. And, again, Nobel laureates are far more likely still.
- “The huge Raven’s gains show that today’s children are far better at solving problems on the spot without a previously learned method for doing so,” Flynn concluded. They are more able to extract rules and patterns where none are given. Even in countries that have recently had a decrease in verbal and math IQ test scores, Raven’s scores went up.
- Some of the changes wrought by modernity and collective culture seem almost magical. Luria found that most remote villagers were not subject to the same optical illusions as citizens of the industrialized world, like the Ebbinghaus illusion. Which middle circle below looks bigger? If you said the one on the right, you’re probably a citizen of the industrialized world. The remote villagers saw, correctly, that they are the same, while the collective farmers and women in teachers’ school picked the one on the right. Those findings have been repeated in other traditional societies, and scientists have suggested it may reflect the fact that premodern people are not as drawn to the holistic context—the relationship of the various circles to one another—so their perception is not changed by the presence of extra circles. To use a common metaphor, premodern people miss the forest for the trees; modern people miss the trees for the forest.
- The more they had moved toward modernity, the more powerful their abstract thinking, and the less they had to rely on their concrete experience of the world as a reference point.
- As Flynn makes sure to point out, this does not mean that brains now have more inherent potential than a generation ago, but rather that utilitarian spectacles have been swapped for spectacles through which the world is classified by concepts.
- Where the very thoughts of premodern villagers were circumscribed by their direct experiences, modern minds are comparatively free. This is not to say that one way of life is uniformly better than another.
- Flynn conducted a study in which he compared the grade point averages of seniors at one of America’s top state universities, from neuroscience to English majors, to their performance on a test of critical thinking. The test gauged students’ ability to apply fundamental abstract concepts from economics, social and physical sciences, and logic to common, real-world scenarios. Flynn was bemused to find that the correlation between the test of broad conceptual thinking and GPA was about zero. In Flynn’s words, <mark style="background: #FFF3A3A6;">“the traits that earn good grades at the university do not include critical ability of any broad significance.”</mark>
- “Even the best universities aren’t developing critical intelligence,” he told me. “They aren’t giving students the tools to analyze the modern world, except in their area of specialization. Their education is too narrow.” He does not mean this in the simple sense that every computer science major needs an art history class, but rather that everyone needs habits of mind that allow them to dance across disciplines.
- if students are to capitalize on their unprecedented capacity for abstract thought. They must be taught to think before being taught what to think about.
- statistician Doug Altman put it, “Everyone is so busy doing research they don’t have time to stop and think about the way they’re doing it.” I rushed into extremely specialized scientific research without having learned scientific reasoning. (And then I was rewarded for it, with a master’s degree, which made for a very wicked learning environment.) As backward as it sounds, I only began to think broadly about how science should work years after I left it.
- Just what magical training mechanism was deployed to transform the orphan foundlings of the Venetian sex industry, who but for the grace of charity would have died in the city’s canals, into the world’s original international rock stars?
- “It was really curious to see, as well as to hear, every part of this excellent concert, performed by female violins, hautbois, oboes, tenors, bases, harpsichords, french-horns, and even double bases,” Burney wrote. More curious still, “these young persons frequently change instruments.”
- But the strategies of their musical development would be a hard sell. Today, the massively multi-instrument approach seems to go against everything we know about how to get good at a skill like playing music. It certainly goes against the deliberate practice framework, which only counts highly focused attempts at exactly the skill to be performed. Multiple instruments, in that view, should be a waste of time.
- The students who would go on to be most successful only started practicing much more once they identified an instrument they wanted to focus on, whether because they were better at it or just liked it more. The instrument, it appeared, was driving the practitioner, rather than the reverse.
- “There was no connection between me and music, until I started fiddling with it myself,” he remembered. “As far as anyone teaching me, there was too many rules and regulations. . . . As long as I could sit down and figure it out for myself, then that was all right.” Even once he became arguably America’s preeminent composer, he relied on copyists to decode his personal musical shorthand into traditional musical notation.
- Charles Limb, a musician, hearing specialist, and auditory surgeon at the University of California, San Francisco, designed an iron-free keyboard so that jazz musicians could improvise while inside an MRI scanner. Limb saw that brain areas associated with focused attention, inhibition, and self-censoring turned down when the musicians were creating. “It’s almost as if the brain turned off its own ability to criticize itself,” he told National Geographic. While improvising, musicians do pretty much the opposite of consciously identifying errors and stopping to correct them.
- <mark style="background: #FFF3A3A6;">He pointed to a study that found an average of six household rules for typical children, compared to one in households with extremely creative children. The parents with creative children made their opinions known after their kids did something they didn’t like, they just did not proscribe it beforehand. Their households were low on prior restraint.</mark>
- “We’re very good, humans are, at trying to do the least amount of work that we have to in order to accomplish a task,” Richland told me. Soliciting hints toward a solution is both clever and expedient. The problem is that when it comes to learning concepts that can be broadly wielded, expedience can backfire. In the United States, about one-fifth of questions posed to students began as making-connections problems. But by the time the students were done soliciting hints from the teacher and solving the problems, a grand total of zero percent remained making-connections problems. Making-connections problems did not survive the teacher-student interactions.
- “Students do not view mathematics as a system,” Richland and her colleagues wrote. They view it as just a set of procedures.
- 41 percent of all undergraduate students in the United States—have on memorized algorithms. Asked whether a/5 or a/8 is greater, 53 percent of students answered correctly, barely better than guessing. Asked to explain their answers, students frequently pointed to some algorithm. Students remembered that they should focus on the bottom number, but a lot of them recalled that a larger denominator meant a/8 was bigger than a/5. Others remembered that they should try to get a common denominator, but weren’t sure why. There were students who reflexively cross-multiplied, because they knew that’s what you do when you see fractions, even though it had no relevance to the problem at hand.
- for learning that is both durable (it sticks) and flexible (it can be applied broadly), fast and easy is precisely the problem.
- “Some people argue that part of the reason U.S. students don’t do as well on international measures of high school knowledge is that they’re doing too well in class,” Nate Kornell, a cognitive psychologist at Williams College, told me. <mark style="background: #FFF3A3A6;">“What you want is to make it easy to make it hard.” Kornell was explaining the concept of “desirable difficulties,” obstacles that make learning more challenging, slower, and more frustrating in the short term, but better in the long term.</mark>
- For a given amount of material, learning is most efficient in the long run when it is really inefficient in the short run. If you are doing too well when you test yourself, the simple antidote is to wait longer before practicing the same material again, so that the test will be more difficult when you do. <mark style="background: #FFF3A3A6;">Frustration is not a sign you are not learning, but ease is.</mark>
- Above all, the most basic message is that teachers and students must avoid interpreting current performance as learning. Good performance on a test during the learning process can indicate mastery, but learners and teachers need to be aware that such performance will often index, instead, fast but fleeting progress.”
- Whether the task is mental or physical, interleaving improves the ability to match the right strategy to a problem. That happens to be a hallmark of expert problem solving. Whether chemists, physicists, or political scientists, the most successful problem solvers spend mental energy figuring out what type of problem they are facing before matching a strategy to it, rather than jumping in with memorized procedures.
- kind learning environments, a kind world is based on repeating patterns. “It’s perfectly fine,” she said, “if you stay in the same village or the same savannah all your life.” The current world is not so kind; it requires thinking that cannot fall back on previous experience. Like math students, we need to be able to pick a strategy for problems we have never seen before. “In the life we lead today,” Gentner told me, “we need to be reminded of things that are only abstractly or relationally similar. And the more creative you want to be, the more important that is.”
- Only about 10 percent of people solve “Duncker’s radiation problem” initially. Presented with both the radiation problem and the fortress story, about 30 percent solve it and save the patient. Given both of those plus the fire chief story, half solve it. Given the fortress and the fire chief stories and then told to use them to help solve the radiation problem, 80 percent save the patient.
- The outside view probes for deep structural similarities to the current problem in different ones. The outside view is deeply counterintuitive because it requires a decision maker to ignore unique surface features of the current project, on which they are the expert, and instead look outside for structurally similar analogies. It requires a mindset switch from narrow to broad.
- students also said that if they were to use analogy companies at all, they believed the best way to generate strategic options would be to focus on a single example in the same field. Like the venture capitalists, their intuition was to use too few analogies, and to rely on those that were the most superficially similar. “That’s usually exactly the wrong way to go about it regardless of what you’re using analogy for,” Lovallo told me.
- “admonitions such as ‘winners never quit and quitters never win,’ while well-meaning, may actually be extremely poor advice.” Levitt identified one of his own most important skills as “the willingness to jettison” a project or an entire area of study for a better fit.
- The expression “young and foolish,” he wrote, describes the tendency of young adults to gravitate to risky jobs, but it is not foolish at all. It is ideal. They have less experience than older workers, and so the first avenues they should try are those with high risk and reward, and that have high informational value. Attempting to be a professional athlete or actor or to found a lucrative start-up is unlikely to succeed, but the potential reward is extremely high. Thanks to constant feedback and an unforgiving weed-out process, those who try will learn quickly if they might be a match, at least compared to jobs with less constant feedback. If they aren’t, they go test something else, and continue to gain information about their options and themselves.
- <mark style="background: #FFF3A3A6;">Persevering through difficulty is a competitive advantage for any traveler of a long road, but he suggested that knowing when to quit is such a big strategic advantage that every single person, before undertaking an endeavor, should enumerate conditions under which they should quit. The important trick, he said, is staying attuned to whether switching is simply a failure of perseverance, or astute recognition that better matches are available.</mark>
- In the wider world of work, finding a goal with high match quality in the first place is the greater challenge, and persistence for the sake of persistence can get in the way.
- No one in their right mind would argue that passion and perseverance are unimportant, or that a bad day is a cue to quit. But the idea that a change of interest, or a recalibration of focus, is an imperfection and competitive disadvantage leads to a simple, one-size-fits-all Tiger story: pick and stick, as soon as possible.
- “I was unaware that I was being prepared,” she told me. “I did not intend to become a leader, I just learned by doing what was needed at the time.”
- It turned out virtually every person had followed what seemed like an unusual path. “What was even more incredible is that they all thought they were the anomaly,” Ogas said. Forty-five of the first fifty subjects detailed professional paths so sinuous that they expressed embarrassment over jumping from thing to thing over their careers. “They’d add a disclaimer, ‘Well, most people don’t do it this way,’”
- Predictors expected that they would change very little in the next decade, while reflectors reported having changed a lot in the previous one.
- Instead of asking whether someone is gritty, we should ask when they are. “If you get someone into a context that suits them,” Ogas said, “they’ll more likely work hard and it will look like grit from the outside.”
- Rather than expecting an ironclad a priori answer to “Who do I really want to become?,” their work indicated that it is better to be a scientist of yourself, asking smaller questions that can actually be tested—“Which among my various possible selves should I start to explore now? How can I do that?” Be a flirt with your possible selves.* Rather than a grand plan, find experiments that can be undertaken quickly. “Test-and-learn,” Ibarra told me, “not plan-and-implement.”
- “<mark style="background: #FFF3A3A6;">Knowledge is a double-edged sword. It allows you to do some things, but it also makes you blind to other things that you could do</mark>.”
- “To be frank, I don’t think we can benefit from domain expertise too much. . . . It’s very hard to win a competition just by using well-known methods,” he replied. “We need more creative solutions.”
- The more information specialists create, the more opportunity exists for curious dilettantes to contribute by merging strands of widely available but disparate information—undiscovered public knowledge, as Don Swanson called it. The larger and more easily accessible the library of human knowledge, the more chances for inquisitive patrons to make connections at the cutting edge.
- In a race to the forefront, a lot of useful knowledge is simply left behind to molder. That presents another kind of opportunity for those who want to create and invent but who cannot or simply do not want to work at the cutting edge. They can push forward by looking back; they can excavate old knowledge but wield it in a new way.
- He is suggesting that communication technology has limited the number of hyperspecialists required to work on a particular narrow problem, because their breakthroughs can be communicated quickly and widely to others—the Yokois of the world—who work on clever applications.
- <mark style="background: #FFF3A3A6;">“If you’re working on well-defined and well-understood problems, specialists work very, very well,” he told me. “As ambiguity and uncertainty increases, which is the norm with systems problems, breadth becomes increasingly important.”</mark>
- “So if I know somebody on the team is a subject area expert, I am very, very happy to have access to them, in terms of asking questions and seeing what they dig up. But I’m not going to just say, ‘Okay, the biochemist said a certain drug is likely to come to market, so he must be right.’ Often if you’re too much of an insider, it’s hard to get good perspective.” Eastman described the core trait of the best forecasters to me as: “genuinely curious about, well, really everything.”
- The best forecasters view their own ideas as hypotheses in need of testing. Their aim is not to convince their teammates of their own expertise, but to encourage their teammates to help them falsify their own notions. In the sweep of humanity, that is not normal. Asked a difficult question—for example, “Would providing more money for public schools significantly improve the quality of teaching and learning?”—people naturally come up with a deluge of “myside” ideas. Armed with a web browser, they don’t start searching for why they are probably wrong. It is not that we are unable to come up with contrary ideas, it is just that our strong instinct is not to.
- The aversion to contrary ideas is not a simple artifact of stupidity or ignorance. Yale law and psychology professor Dan Kahan has shown that more scientifically literate adults are actually more likely to become dogmatic about politically polarizing topics in science. Kahan thinks it could be because they are better at finding evidence to confirm their feelings: the more time they spend on the topic, the more hedgehog-like they become.
- “Good judges are good belief updaters,” according to Tetlock. If they make a bet and lose, they embrace the logic of a loss just as they would the reinforcement of a win. That is called, in a word: learning. Sometimes, it involves putting experience aside entirely.
- Rather than adapting to unfamiliar situations, whether airline accidents or fire tragedies, Weick saw that experienced groups became rigid under pressure and “regress to what they know best.” They behaved like a collective hedgehog, bending an unfamiliar situation to a familiar comfort zone, as if trying to will it to become something they actually had experienced before. For wildland firefighters, their tools are what they know best. “Firefighting tools define the firefighter’s group membership, they are the firefighter’s reason for being deployed in the first place,” Weick wrote. “Given the central role of tools in defining the essence of a firefighter, it is not surprising that dropping one’s tools creates an existential crisis.” As Maclean succinctly put it, “When a firefighter is told to drop his firefighting tools, he is told to forget he is a firefighter.”
- “When you don’t have any data,” Feynman said, “you have to use reason.”
- She found that the most effective leaders and organizations had range; they were, in effect, paradoxical. They could be demanding and nurturing, orderly and entrepreneurial, even hierarchical and individualistic all at once. A level of ambiguity, it seemed, was not harmful. In decision making, it can broaden an organization’s toolbox in a way that is uniquely valuable.
- “Scientific progress on a broad front results from the free play of free intellects, working on subjects of their own choice,” Bush wrote, “in the manner dictated by their curiosity for exploration of the unknown.”
- Going where no one has is a wicked problem. There is no well-defined formula or perfect system of feedback to follow. It’s like the stock market that way; if you want the sky highs, you have to tolerate a lot of lows. As InnoCentive founder Alph Bingham told me, “breakthrough and fallacy look a lot alike initially.”
- Compare yourself to yourself yesterday, not to younger people who aren’t you. Everyone progresses at a different rate, so don’t let anyone else make you feel behind. You probably don’t even know where exactly you’re going, so feeling behind doesn’t help. Instead, as Herminia Ibarra suggested for the proactive pursuit of match quality, start planning experiments. Your personal version of Friday night or Saturday morning experiments, perhaps.